USN

First Semester B.E. Degree Examination, July/August 2022 **Engineering Mathematics - I**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Find the nth derivative of i) x^2e^{5x} 1 (06 Marks)

Find the angle between the curves $r = a\theta$ and $r = \frac{a}{\Omega}$ (07 Marks)

Find the pedal equation of the curve $r = a (1 + \cos\theta)$. (07 Marks)

2 a. If
$$x = \tan(\log y)$$
 prove that $(1 + x^2)y_{n+1} + (2nx - 1)y_n + n(n-1)y_{n-1} = 0$. (06 Marks)

Prove with usual notation $\tan \oint = r \left(\frac{d\theta}{dr} \right)$. (07 Marks)

Find the radius of curvature of the curve $y = 4 \sin x - \sin 2x$ at $x = \pi/2$. (07 Marks)

3 a. Expand
$$2x^3 + 7x^2 + x - 6$$
 in power of $(x - 2)$ using Taylor's theorem. (06 Marks)

b. Evaluate: i)
$$\underset{x \to 0}{\text{Lt}} \frac{a^x - b^x}{x}$$
 ii) $\underset{x \to 0}{\text{Lt}} \left(x^x\right)$ (07 Marks)

c. If
$$u = \frac{2yz}{x}$$
: $V = \frac{3zx}{y}$ $W = \frac{4xy}{z}$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (07 Marks)

4 a. If
$$u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$$
 prove that $xu_x + yu_y = 3$ tanu. (06 Marks)

b. Using Maclaurin's series prove that $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$. (07 Marks)

c. Find $\frac{dU}{dt}$, if $u = x^3y^2 + x^2y^3$ where $x = at^2$, y = 2at using partial derivatives. (07 Marks)

- Module-3
 A particle moves along the curve C: $x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$ where 't' denotes 5 time. Find the components of its acceleration at t = 2 along the tangent.
 - Find the value of "a" such that $\vec{F} = (axy z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$ is irrotational. Also find a scalar function ϕ such that $F = \nabla \phi$. (07 Marks)
 - Prove that div(curl A) = 0. (07 Marks)

17MAT11

OR

- 6 a. Find the divergence and curl of vector $\vec{F} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 y^2z)\hat{k}$ at (2, -1, 1).
 - b. Find the directional derivative of $\vec{F} = xy^2 + yz^3$ at (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$. (07 Marks)
 - c. Prove that curl (grad ϕ) = $\overrightarrow{0}$.

(07 Marks)

Module-4

- 7 a. Obtain the reduction formula for $\int \sin^n x dx$. (06 Marks)
 - b. Solve: $x \frac{dy}{dx} + y(\log y) = xye^x$. (07 Marks)
 - c. Water at temperature 30°C takes 5 minutes to warm upto 50°C in a room temperature of 60°C. Find the temperature after 20 minutes. (07 Marks)

OR

- 8 a. Evaluate $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{7/2}} dx$. (06 Marks)
 - b. Solve: $(2xy + e^y)dx + (x^2 + xe^y)dy = 0$. (07 Marks)
 - c. Find the orthogonal trajectory of the family of curve $r^2 = a\sin 2\theta$. (07 Marks)

Module-5

9 a. Solve the system of equations by Gauss Seidal method. 30x - 2y + 3z = 75; 2x + 2y + 18z = 30; x + 17y - 2z = 48, carry out three iteration.

b. Diagonalise the matrix $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$. (06 Marks)

c. Using Rayleigh's power method, find largest Eigen value and corresponding Eigen vector of

the matrix $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ choosing $X_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. (07 Marks)

10 a. Find the Rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & 1 \end{bmatrix}$ (06 Marks)

- b. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4xz$ into canonical form, using orthogonal transformation. (07 Marks)
- c. Apply Gauss-Jordan method to find the solution of system of equations x + 2y + z = 3, 3x y + 2z = 13, 2x + 3y + 3z = 10. (07 Marks)

* * * * *